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Abstract. The local persistence probability Pl(t) that a site never becomes active up to time t, and the
global persistence probability Pg(t) that the deviation of the global density from its mean value ρ(t)−〈ρ(t)〉
does not change its sign up to time t are studied in a (1+1)-dimensional directed percolation process by
Monte-Carlo simulations. At criticality, starting from random initial conditions, Pl(t) decays algebraically
with the exponent θl ≈ 1.50(2). The value is found to be independent of the initial density and the
microscopic details of the dynamics, suggesting θl is an universal exponent. The global persistence exponent
θg is found to be equal or larger than θl. This contrasts with previously known cases where θg < θl. It
is shown that in the special case of directed-bond percolation, Pl(t) can be related to a certain return
probability of a directed percolation process with an active source (wet wall).

PACS. 64.60.Ak Renormalization-group, fractal and percolation studied of phase transition – 05.40.+j
Fluctuation phenomena, random processes, and Brownian motion – 05.70.Ln Nonequilibrium thermody-
namics, irreversible processes

1 Introduction

In recent years it has been realized that certain first-
passage quantities in nonequilibrium systems exhibit a
power law decay with non-trivial exponents [1–12]. One of
these quantities is the local persistence probability Pl(t),
defined as the probability that a local variable at a given
point in space (normally a spin) has not changed its state
until time t during a stochastic evolution. In various sys-
tems it was found that Pl(t) ∼ t−θl , where θl is the local
persistence exponent. A similar quantity, the global per-
sistence probability Pg(t), defined as the probability that
the global order parameter does not change its sign up
to time t, is also found to decay as a power law with a
global persistence exponent θg. In general the exponents θl
and θg are found to be independent of the usual scaling
exponents and different from each other. The persistence
probabilities depend on the history of evolution as a whole,
and thus it is generally hard to determine these exponents
analytically. Only a few cases of exact results are known
[2,4,11].

An important nonequilibrium process that has been
studied extensively is directed percolation (DP) [13], in-
terpreted as a reaction-diffusion system. A large variety of
physical systems which undergo a phase transition from a
fluctuating active phase into an absorbing state (i.e. a con-
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figuration once reached, the system cannot escape from)
belongs to the same universality class as DP. Therefore it
would be interesting to study the persistence probability
in DP since this could provide some understanding of the
non-equilibrium nature of this process.

In this article we present a numerical study of the
local and the global persistence probabilities in (1+1)-
dimensional DP processes. We find that the local persis-
tence probability decays as a power law with the exponent
θl ≈ 1.5. On the other hand, our measurements of the
global persistence probability indicate that θg ≥ 1.5. This
observation comes as a surprise since in all previously
known cases it was found that θg < θl [7]. Our findings are
supported by a recent field-theoretical analysis of global
persistence [14].

Persistence exponents are known to exhibit universal
properties. For example, the local persistence exponent
of the (2+1)-dimensional Glauber model in the ordered
phase T < Tc is independent of the temperature T [15],
whereas it is not universal with respect to the initial mag-
netization [4]. In contrast, the persistence exponents in DP
turn out to be independent of the initial density. In addi-
tion we find these exponents to be the same for different
microscopic realizations of the DP process, indicating that
θl and θg are indeed universal exponents that characterize
the DP universality class.
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We also show that the local persistence probabil-
ity is related to certain observables measured in (1+1)-
dimensional DP processes with boundaries. Introducing a
transfer matrix formalism we establish an exact relation
between Pl(t) and a specific quantity measured in a DP
process with an absorbing boundary (dry wall). A similar
relation is found between Pl(t) (which can be seen as a
“first return” probability) and the probability R(t) that
a DP process with a steady active source (wet wall) re-
turns to its initial condition. For a particular realization
of DP, called bond-directed percolation, this relation can
be proven exactly. Thus the problem of local persistence
is related to both the dry and the wet wall problems in
DP which have been discussed in references [16–18].

The article is organized as follows: in Section 2 we
briefly review the DP process. Our numerical results are
presented in Section 3. Performing Monte-Carlo (MC)
simulations we measure local and global persistence prob-
abilities and estimate the corresponding exponents θl and
θg. In order to measure θg more accurately we use a block
spin method which has been introduced recently in ref-
erence [19]. In Section 4 the relation between Pl(t) and
a specific observable in a DP process with a dry wall is
proved exactly. The relation between Pl(t) and the return
probabilityR(t) in presence of an active source is discussed
in Section 5.

2 Directed percolation – a brief overview

Directed percolation [13] is used as a model for the spread-
ing of some generally non-conserved agent and plays a role
in certain autocatalytic chemical reactions and spreading
of epidemics. In DP models, sites of a lattice are either oc-
cupied by a particle (active, wet) or empty (inactive, dry).
The dynamical processes are defined in a way that parti-
cles can either self-destruct or produce an offspring at a
neighboring empty site. If the rate for offspring production
p is very low, the system will always reach a state with-
out particles which is the absorbing state of the system.
On the other hand, when p exceeds a critical threshold pc,
another steady state of the system exists on the infinite
lattice, where the density ρ(p) of active sites is finite. Be-
tween the two phases a continuous phase transition takes
place which is characterized by long range correlations.
There are various different models for DP, e.g. directed
site and bond percolation on a lattice [13], cellular au-
tomata such as the Domany-Kinzel model [20], and the
contact process [21], to name only a few.

One of the most important properties of directed per-
colation is its robustness with respect to the microscopic
dynamics of the system. According to a widely accepted
conjecture formulated by Janssen and Grassberger [22],
any transition from a fluctuating active phase into a single,
non-fluctuating and non-degenerate absorbing state be-
longs to the DP universality class, provided the dynamical
processes are local and characterized by a one-component
order parameter without special attributes like additional
symmetries or frozen randomness. The DP universality
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Fig. 1. Universal properties of the local persistence exponent
θl. The probability Pl(t) that a site never becomes active up
to time t is measured in a Domany Kinzel model with 1024
sites averaged over 105 independent runs. Starting with the
initial density ρ(0) = 0.8 various critical points are examined.
The results indicate a power law decay which is consistent with
θl = 1.49(2) in all cases. The bold line marks slope −3/2.

class is characterized by three critical exponents, namely
the density exponent β and the scaling exponents ν|| and
ν⊥. Therefore, if Pl(t) and Pg(t) actually decay as a power
law, an interesting question would be whether θl and θg
are independent of these three exponents and exhibit a
similar robustness.

In the present work we analyze the persistence proba-
bilities Pl(t) and Pg(t) by Monte-Carlo simulations. A DP
model which is convenient for this purpose is the Domany-
Kinzel (DK) cellular automaton [20]. The DK model is de-
fined as follows: a binary variable σi(t) = 0, 1 characterizes
the state of site i at discrete time t. σ = 1 means that the
site is active (wet) whereas σ = 0 means that it is inac-
tive (dry). The automaton evolves by a parallel update
rule in which the state of σi(t+ 1) is selected according to
transition probabilities τ(σi(t + 1)|σi−1(t), σi+1(t)). The
transition probabilities of the DK model are

τ(1|0, 0) = 0

τ(1|0, 1) = τ(1|1, 0) = p1 (1)

τ(1|1, 1) = p2

τ(0|σi−1, σi+1) = 1− τ(1|σi−1, σi+1).

Thus the model is controlled by two parameters p1 and p2.
For fixed p2 < 1 there is a critical value p1,c where a con-
tinuous phase transition takes place. It is assumed that for
p2 < 1 the critical behavior along the whole line p1,c(p2) is
the same as that of DP. In particular, the phase transition
line includes three particular points, namely [23]:

1. directed bond percolation: p1 = 0.644701(1),
p2 = 2p1 − p2

1;
2. directed site percolation: p1 = p2 = 0.705485(5);
3. Wolfram’s rule 18: p1 = 0.8092(1), p2 = 0.
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Fig. 2. Universal properties of the local persistence exponent
θl. Pl(t) is measured for directed bond percolation with var-
ious initial densities. For ρ(0) ≥ 0.4 an algebraic decay with
θl = 1.50(2) is observed. In the case of very low initial density
there seems to be a longer transient until the final power law
decay is reached. The bold line indicates the slope −3/2.

As a necessary condition, a universal critical exponent
should not depend on the choice of the transition point
used in a simulation at criticality.

Another special case is compact directed percolation
where p1 = 1/2 and p2 = 1. Here the dynamics of the
model belong to the universality class of annihilating ran-
dom walks or, equivalently, the Glauber Ising model. In
fact, it turns out that in the case of compact DP the re-
sults of references [1,4,7] are recovered.

3 Monte-Carlo simulations

3.1 Local persistence probability

The local persistence probability Pl(t) is defined as the
probability that in a DP process starting from random
initial conditions a given inactive site does not become
active up to time t. This quantity is nontrivial because it
can be seen as an infinite-point correlation function in the
direction of time.

Notice that in contrast to Ising systems we define Pl(t)
as the probability for a site not to become active rather
than not to flip. The reason is the asymmetry between ac-
tive and inactive sites in DP: since active sites can sponta-
neously turn into inactive sites, the probability for a site
to remain active up to time t decays exponentially. On the
other hand, sites may remain inactive for very long times
since they can only flip in presence of an active neighbor-
ing site. Thus Pl(t), defined as the probability for a site
to remain inactive, is expected to decay more slowly.

The qualitative behavior of Pl(t) depends on the per-
colation probability. In the inactive phase the density of
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Fig. 3. Finite-size scaling function for the local persistence
probability in the absorbing phase. The scaled persistence
probability Pl(t)t

θl is measured at criticality for system sizes
L = 8, 16, 32, . . . , 1024 and agains scaled time t/Lz . The best
data collapse is obtained for θl = 1.50(1).

active sites decays exponentially fast until the system en-
ters the absorbing state. Therefore, a finite fraction of sites
remains inactive so that Pl(t) saturates at some constant
value. In the active phase an infinite percolating cluster
emerges. Since in that case the size of inactive islands in
the cluster is finite, Pl(t) will decay exponentially. At the
critical point, however, there is no characteristic length
scale and therefore we expect Pl(t) to decay as a power
law.

We performed Monte-Carlo simulations at various
transition points for different initial densities. In all cases
a power law decay is observed. The local persistence expo-
nent θl ≈ 1.50(3) is found to be independent of the choice
of the transition point as well as the initial density (see
Figs. 1 and 2).

Similar results (not reported here) are obtained for the
contact process [21] which is a model for DP with random
sequential dynamics. Our findings therefore suggest that
θl is indeed a universal exponent in DP.

In addition, we examined the scaling properties of the
local persistence probability. According to the usual scal-
ing theory of DP [13], we expect Pl(t) to scale like

Pl(t, L, ε) ∼ t
−θl f(εν||t, L−zt) , (2)

where ε = |p− pc| measures the distance from the critical
point, z = ν||/ν⊥ is the dynamical exponent, and f is a
universal scaling function with the asymptotic behavior

f(0, 0) = const.

f(x, 0) ∼ xθl for x→∞ (3)

f(0, y) ∼ yθl for y →∞ .

We verified the finite-size scaling of equation (2) at criti-
cality. In Figure 3 the scaling function f(0, L−zt) is shown
for various system sizes.
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The best data collapse is obtained for θ = 1.50(1)
which is our the most precise estimate for the local persis-
tence exponent. Attempts to relate θl to the DP exponents
β ' 0.2765, ν⊥ ' 1.0968, and ν|| ' 1.7338 [17,23] have
failed wherefore we believe that θl is an independent crit-
ical exponent.

3.2 Global persistence probability

The global persistence probability Pg(t) is usually defined
as the probability that the global order parameter (e.g. the
total magnetization in the Ising model) does not change
its sign up to time t. It has been studied in various models
as, for example, in the Ising model [7] and models in the
parity conserving class [10]. In all cases it was found that
Pg(t) decays algebraically with an exponent θg which is
independent of θl and the other scaling exponents of the
system.

In DP, however, the global order parameter – the den-
sity of active sites ρ(t) – is a strictly positive quantity
and therefore the above definition is not applicable. In-
stead one has to consider the probability that the devia-
tion of the order parameter from its mean value ∆ρ(t) =
ρ(t) − 〈ρ(t)〉 does not change its sign up to time t. As in
the case of local persistence we observe that in finite sys-
tems this probability depends on the sign of ∆ρ(t). In the
context of a recent field-theoretical analysis of global per-
sistence in DP [14] it was predicted that this asymmetry
should vanish in an infinite system where ∆ρ(t) becomes
a Gaussian process. In finite systems, however, nonlinear
contributions in the noise correlations play an important
role. In fact, the normalized variance of the fluctuations
is no longer constant but increases monotonically with
the actual value of the deviation ∆ρ(t). This implies that
the effective time scales for postive and negative fluctua-
tions are different and therefore intermediate states with
∆ρ(t) > 0 have a shorter lifetime than those with a neg-
ative deviation. In numerical simulations this asymmetry
strongly affects the global persistence probability. Even
in systems with several thousand sites the probability for
the deviation to remain positive up to time t decays as a
power law while the corresponding probability for nega-
tive deviation vanishes exponentially. In agreement with
reference [14], we observe that this asymmetry gradually
decreases with increasing system size, but as a matter of
fact numerical simulations seem to be confined to a regime
where the asymmetry dominates. Keeping this problem in
mind, we define Pg(t) as the probability of ∆ρ(t) to remain
negative from t = 0 up to time t. Notice that in contrast
to reference [14], we do not introduce intial waiting times.

Usually it is difficult to measure θg by Monte-Carlo
simulations, the reason being that each run produces only
one data point (the first passage time) whereas the mea-
surement of θl produces a number of data points of the
order of the system size L. Hence a large number of runs
is required to obtain good statistics. However, recently
it has been shown [19] that this problem can be circum-
vented by introducing spin-block persistence probabilities
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Fig. 4. Global persistence probability and Block spin method:
Decay of the persistence probability Pm(t) for block sizes
m = 1, 2, 4, 8, 16. From the slopes we obtain the estimates
θ1 = 1.52(2), θ2 = 1.48(2), θ4 = 1.49(2), θ8 = 1.52(2),
θ16 = 1.49(2). The bold line represents a direct measurement
of Pg(t) (shifted vertically by a factor of 10). The dashed line
indicates slope −3/2.

Pm(t) which are defined as follows: consider blocks of m
sites and define a block density ρm(t) as the average frac-
tion of active sites in each block. Let Pm(t) be the prob-
ability that ∆ρm(t) = ρm(t)− 〈ρ(t)〉 remains negative up
to time t. Obviously the spin-block persistence probabil-
ity Pm(t) connects the special cases of local and global
persistence, namely

P1(t) = Pl(t), P∞(t) = Pg(t) . (4)

It was observed in reference [19] that Pm(t) in a Glauber
model first decays as Pg(t) ∼ t−θg and then crosses over
to the power law decay Pm(t) ∼ Pl(t) ∼ t−θl , where the
crossover time grows with the box size. Since the num-
ber of such boxes is of order L/m, this method allows to
measure θg much more accurately. We have measured the
Pm(t) for block sizes m = 1, 2, 4, 8, 16. As can be seen
in Figure 4, Pm(t) decays as t−θm where the exponents
θm ' 1.50(4) seem to be independent of m, suggesting
that the global and the local persistence exponents are
identical. However, the question arises whether the spin-
block method is still valid in the case of DP since the
small box sizes enhance the nonlinearity of the fluctua-
tions mentioned above [24]. Already after 100 updates,
the correlation length ξ⊥ of a DP process extends over ap-
proximately 50 sites. Since the correlation length is larger
than the considered box sizes it is questionable whether
the spin-block method is applicable in DP. Even the di-
rect measurement of global persistence remains problem-
atic since ratio L/ξ⊥ ' 20 is probably so small that we
are still in a regime where ∆ρ(t) does not behave like a
Gaussian process.



H. Hinrichsen and H.M. Koduvely: Numerical study of local and global persistence in directed percolation 261

In order verify the spin-block results, we measured the
global persistence probability Pg(t) over two decades in
time (see bold line in Fig. 4). Although this measurement
is not very accurate, it indicates that the actual value θg
might be equal or slightly larger than θl. This is surprising
since in all previously known cases θg was found to be
smaller than θl. For example, in the (1+1)-dimensional
Glauber-Ising model θg = 1/4 and θl = 3/8 [4,7].

3.3 Power law versus stretched exponential

In certain reaction diffusion models it was shown that the
Pl(t) decays as a stretched exponential function rather
than a power law [3]. In numerical simulations it is some-
times difficult to distinguish between stretched exponen-
tial and power law decay. In order to verify whether Pl(t)
truly decays as a power law one can use a heuristic ar-
gument as indirect test [3]: consider a site that has been
inactive up to time t. In order to become active in the
next time step t+1, it is necessary that a neighboring site
is active at time t. Hence Pl(t) changes according to

d

dt
Pl(t) = −Pl(t)ρs(t) , (5)

where ρs(t) is the probability for finding an active site
near a site which was never active until time t. By inte-
grating equation (5) one can easily show that Pl(t) decays
as a power law only if ρs(t) ∼ t−1. On the other hand, if
ρs(t) decayed as t−α with α 6= 1, Pl(t) would decay as a
stretched exponential. Thus, by measuring the exponent
α in a Monte-Carlo simulation, we can verify the observed
power law decay for Pl(t). Our results (see Fig. 5) are con-
sistent with ρs(t) ∼ t−1, supporting that Pl(t) actually
decays algebraically.

4 Relation to directed percolation
with an absorbing boundary

In this section we prove that the local persistence proba-
bility Pl(t) is exactly equal to the expectation value of
a specific observable in a DP process with an absorb-
ing boundary. A boundary is called absorbing if all bonds
across the boundary are cut. In a (1+1)-dimensional sys-
tem such an absorbing boundary can be introduced by
forcing a particular site to be inactive during the whole
time evolution, i.e. an absorbing boundary can be under-
stood as a dry wall. The effect of an absorbing boundary in
a (1+1)-dimensional DP process has been recently stud-
ied in references [16–18], and it is therefore interesting to
investigate the relation between the two problems.

Let us consider a DK model with L sites and periodic
boundary conditions. Denoting by |σ〉 = {σ1, σ2, . . . , σL}
basis vectors in configuration space, the transfer matrix T
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of the DK model is defined by

〈σ′(t+ 1)|T|σ(t)〉 =
L∏
i=1

τ
(
σi(t+ 1)|σi−1(t), σi+1(t)

)
.

(6)

Furthermore let us define vectors for the absorbing con-
figuration |0〉, the state |a〉 where all sites are active, and
the sum over all configurations |1〉:

|0〉 = {0, 0, . . . , 0, 0}

|a〉 = {1, 1, . . . , 1, 1} (7)

|1〉 =
∑

σ1,σ2,... ,σL

|σ〉·

Using this notation the transfer matrix obeys

T|0〉 = |0〉 , 〈1|T = 〈1| , (8)

i.e. the absorbing state is a ground state of the DK model
and the transfer matrix conserves probability. Let us now
select an arbitrary site j and define local operators S0,
P0, and W by

〈σ′|S0|σ〉 = δσ′j ,0

L∏
i=1,i6=j

δσ′i,σi

〈σ′|P0|σ〉 = δσ′j ,0

L∏
i=1

δσ′i,σi (9)

〈σ′|W|σ〉 = τ(0|σj−1, σj+1)
L∏
i=1

δσ′i,σi .
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S0 turns site j into the inactive state, P0 projects onto
states where site j is inactive, and W is a diagonal weight
operator to be explained below. Notice that S0 conserves
probability whereas P0 does not. Using these notations
we can now express the local persistence probability Pl(t)
as

Pl(t) = 〈1|(P0T)t|i〉 . (10)

Here |i〉 denotes the initial probability distribution where
the average over different initial configurations is taken
into account. For example, the average over random ini-
tial conditions with particle density ρ corresponds to the
initial distribution

|i〉 =
∑

σ1,σ2,... ,σL

L∏
i=1

[ρσi + (1− ρ)(1− σi)] |σ〉 . (11)

In equation (10) the projector P0 removes all space-time
histories which would turn site j into the active state giv-
ing just the local persistence probability Pl(t). Notice that
this expression is already properly normalized.

Now consider a DP process with an absorbing bound-
ary inserted at site j. This process is described by a differ-
ent transfer matrix T̃ where site j is forced to be inactive:

T̃ = S0T . (12)

One can easily show that T̃ is related to the full transfer
matrix T by P0T = T̃W which implies that

Pl(t) = 〈1|(T̃W)t|i〉 . (13)

Therefore the local persistence probability Pl(t) is exactly
equal to the expectation value of the diagonal operator W
measured before each update in a DP process with an
absorbing boundary. Equation (13) can be written as

Pl(t) =

〈
t−1∏
t′=0

τ(0|σj−1(t′), σj+1(t′))

〉
, (14)

where 〈...〉 denotes the average over many independent
realizations of a DP process with an absorbing bound-
ary at site j, combined with an independent average over
initial configurations according to the probability distri-
bution |i〉. Note that τ(0|σj−1(t′), σj+1(t′)) refers to the
transition probability (1) of the DK model without dry
wall at site j.

Because of the dry wall at site j, σj−1(t) and σj+1(t)
are uncorrelated in an infinite system. Assuming that
events where σj−1(t) = σj+1(t) = 1 are rare we may there-
fore approximate equation (14) by

Pl(t) '

〈
exp

[
−γ

t−1∑
t′=0

σj+1(t′)

]〉
, (15)

where γ = −2 log(1 − p1). Thus Pl(t) is related to the
integrated activity next to the boundary. As mentioned
before, the surface activity of a (1+1)-dimensional DP

process with an absorbing boundary has been carefully
analyzed by series expansions and MC simulations in ref-
erences [16,17]. It was observed that the activity next to
the boundary decays according to a power law

〈σj±1(t)〉 ∼ t−β
′/ν|| . (16)

Furthermore, it has been conjectured that β′ = ν|| − 1
which means that〈

t−1∑
t′=0

σj+1(t′)

〉
∼ t1/ν|| . (17)

If the average 〈 〉 in equation (15) commuted with the
exponential function, equation (17) would imply that Pl(t)
decays asymptotically as a stretched exponential

Pl(t) ∼ exp(−γ t1/ν||) (18)

rather than a power law. However, our numerical results
strongly suggest that Pl(t) does indeed decay as a power
law (see Sect. 3.3). In fact, a stretched exponential of the
form (18) is in obvious contradiction with the simulation
data. Thus the average operation 〈 〉 does certainly not
commute with the exponential function. Nevertheless we
are left with a puzzle: for both equations (15, 17) to de-
cay algebraically, a delicate mechanism in the exponential
function is needed, i.e. higher cumulants of the integrated
surface activity have to match in a very specific way.

5 Relation to a directed percolation process
with an active source

We will now show that the local persistence probability
Pl(t) can be related to a return probability in a (1+1)-
dimensional DP process with a pointlike active source.
More precisely, we will show that Pl(t) is equal to the
probability for a DP process with an active source to re-
turn to a state where all sites except for the source are
inactive. We will prove this relation exactly in the case of
directed bond percolation.

The mapping can qualitatively be understood as fol-
lows: consider a particular realization of a DP process (a
single MC run) starting from initial conditions where all
sites except for site j are active. Let us assume that in
this particular realization site j has never become active
up to time t1. Such a realization is shown schematically
in Figure 6. Obviously there are no open paths from the
horizontal line t = 0 (line A in Fig. 6) to the vertical line
at site j given by 0 < t̃ ≤ t1 (line B). Conversely, there is
no open path backwards in time from line B to line A. In
the special case of directed bond percolation we may now
consider a DP process in reverse time direction using the
same realization of open and closed bonds. Furthermore,
let us assume that we force site j to be active along line B,
i.e. we impose an active source at this location. If there is
no open path from B to A, activity will not percolate from
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line A

t

line B
Fig. 6. Mapping of the local persistence problem onto a di-
rected bond percolation process with a steady source in the
center. The figure shows a particular realization of open bonds
(solid lines) on a tilted square lattice (dotted lines) in directed
bond percolation. Active sites are marked by bold dots. Ini-
tially all sites are in the active state (line A). Activity then
percolates through the system without touching site j (line
B). In reverse time direction this means that there is no open
path backwards from line B to line A.

line B to line A in the “time-reversed” process. In other
words, the reverse process returns to its initial condition
where all sites except for the source are inactive.

We now prove this mapping for the special case of di-
rected bond percolation. More precisely we show that in
this case the probability R(t) of a DP process with an ac-
tive source to return to its initial condition where all sites
except for site j are inactive is exactly equal to the persis-
tence probability Pl(t). Using the notations of Section 4,
let us introduce two further operators S1 and U:

〈σ′|S1|σ〉 = δσ′j ,1

L∏
i=1,i6=j

δσ′i,σi

〈σ′|U|σ〉 =
L∏
i=1

(1− δσ′i,1δσi,1) . (19)

The operator S1 turns site j into the active state whereas
the operator U is a symmetric transformation matrix. One
can easily verify that for p2 = p1(2− p1), i.e., for directed
bond percolation, the following relation holds:

UT = TTU . (20)

Furthermore we have

UP0 = ST1 U , US0 = ST1 U . (21)

By commuting the matrix U to the right and transpos-
ing the resulting expression, we can now rewrite the local
persistence probability Pl(t) in equation (13) as

Pl(t) = 〈1|(P0T)t|i〉

= 〈0|U(P0T)tS0|a〉

= 〈0|(ST1 TT )tST0 U|a〉 (22)

= 〈a|US0(TS1)t|0〉

= 〈0|S0(TS1)t|0〉 = R(t) ,

where we assumed the initial condition |i〉 = S0|a〉 for
the persistence measurement in which all sites except for
site j are active. We also used the relations 〈1| = 〈0|U and
〈a|U = 〈0|. The resulting expression 〈0|S0(TS1)t|0〉 =
R(t) is precisely the return probability of a DP process to
its initial condition with an active source at site j, which
completes the proof. Notice that similar arguments were
used in reference [4] in order to derive the persistence ex-
ponent in the Glauber model.

Although this proof holds only for the case of directed
bond percolation, the relation seems to be more general.
In fact, we verified numerically that Pl(t) and R(t) exhibit
the same power law behavior at various transition points
in the DK model.

6 Conclusions

In the present work the problem of local and global persis-
tence in directed percolation has been studied numerically.
The results suggest that both the local and global persis-
tence probabilities exhibit an algebraic decay in time at
the critical point. The critical exponent θl turns out to
be universal and independent of the initial density. The
universality appears to be even stronger than in the Ising
model where an explicit dependence on the initial density
is found for θl. The reason might be an exponentially fast
decaying memory of initial conditions in DP since active
sites can spontaneously become inactive. We carefully an-
alyzed our data in order to rule out any stretched exponen-
tial decay of the persistence probability. The measurement
of the global persistence probability indicates that θl ≥ θg
which contrasts with previously known cases where it was
found that θg < θl. In order to consider the problem in
a more general context, we related the local persistence
probability to certain observables in a DP process with
a dry and a wet wall, respectively. Introducing a transfer
matrix formalism these relations were proven exactly for
particular realizations of DP.

Various questions remain open. Recently it was shown
by field-theoretical renormalization group analysis [14]
that the global persistence exponent θg is indeed inde-
pendent from other DP exponents. Whether the same is
true for the local persistence exponent θl is not yet clear.
The numerical value θl ≈ 1.50(1) suggests that the exact
value could be 3/2, a possibility which cannot be ruled
out as an integer exponent was also observed in a DP pro-
cess with an absorbing boundary [16,17]. Finally, it would
be interesting to investigate the same problem in higher
dimensions.
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